
Biography
Nicola Patron is a molecular and synthetic biologist interested in the natural and engineered transfer of genetic material between genomes of different species. Her lab is focused on engineering photosynthetic organisms for industrial biotechnology and crops that are healthier to consume and less environmentally damaging to cultivate.
Nicola obtained her PhD in plant molecular biology studying recombination between viruses and viral transgenes inserted into plant genomes. In post-doctoral research at The John Innes Centre, U.K. and The University of British Columbia, Canada she studied the impact that genes transferred from endosymbionts have on cellular metabolism and function, and evolution of endosymbiont genomes. From 2009-2013 Nicola was based in Melbourne, Australia leading a plant molecular biology group working with industry. Achievements included precision genome editing and targeted gene transfer with programmable nucleases. In 2013, Nicola returned to the UK to head a new Synthetic Biology venture at The Sainsbury Laboratory in Norwich before moving to EI.
As recipient of a 2015 SynbioLEAP fellowship, Nicola was recognised as an emerging leader in synthetic biology with a vision and aspiration to shape biotechnology for the public good. She is particularly interested the societal impacts of synthetic biology and the complex intellectual property issues that surround genetic sequences, DNA and natural products. Nicola is an advocate of responsible and ethical innovation and of open-source tools for biotechnology. She is also active in promoting diversity and inclusivity in science.
Projects
Publications
Related reading.

Single cells offering limitless potential

Cellular Genomics: understanding why being different is normal

Bananas are on the brink but close cousins could save their skins

Cultural differences: how analysing mixed communities of microorganisms could help us understand AMR

Memories of sequencing the human genome to mark seven decades of DNA

Hidden jewels in our blood could hold secrets of healthy ageing

Differences make a difference: from one cell to a world of individuality

Artificial realities: copying wild microbial communities in the lab

Engineered plants produce sex perfume to trick pests and replace pesticides

Human body a breeding ground for antimicrobial resistance genes

Key tilapia genome offers boost to global food security

Exotic wheat DNA could help breed ‘climate-proof’ crops

Sequencing project to unleash the huge potential of euglenoids

Circadian clock insights could be key to increased wheat yields

European consortium launched to reverse biodiversity loss through genomics research
