
Function follows (iso)form: exploring functional diversity of isoform expression in single cells
Vacancy details:
Single-cell gene expression analysis has the power to resolve the multitude of cell types that comprise a complex biological system.
The majority of genes have the potential to be alternatively spliced into more than one isoform, with different isoforms of the same gene encoding distinct proteins with distinct functions. We hypothesise that this diversity in isoform expression, unseen in most single-cell analyses, is one way that individual cells can become functionally heterogeneous.
This project will explore the diversity of isoform expression in the mouse haematopoietic system, with the aim of identifying functionally heterogeneous isoforms and their pattern of expression within individual cells.
Using long-read sequencing, we have demonstrated that alternative splicing is prevalent in many of the key genes involved in blood cell development. However, the diversity of expression of these isoforms is completely unexplored in individual cells.
Preliminary data from our lab suggests that single blood stem cells can express several isoforms of a gene simultaneously, including those with potentially antagonistic functions. It is these functionally meaningful alternative splicing events we wish to study in this project.
Using a range of techniques, including FACS, single-cell genomics, next generation short- and long- read sequencing and bioinformatic analysis, the student will focus on the identification of functionally consequential isoform expression within individual blood stem and progenitor cells.
The functional effect of the isoform expression will then be studied through genome editing to remove exons and force cells to express specific sets of isoforms, then monitoring the cell's response through gene expression, in vitro and in vivo assays.
Based in the Macaulay lab at the Earlham Institute and in collaboration with the Haerty (EI) and Rushworth (UEA MED) groups, the student will receive extensive training in experimental and computational biology, developing broad and transferrable expertise in cellular genomics.
Further Information
- Shortlisted applicants will be interviewed either on 16th or 17th May 2023.
- The Norwich Research Park (NRP) Biosciences Doctoral Training Programme (DTP) is offering fully-funded studentships for October 2023 entry.
- The programme offers postgraduates the opportunity to undertake a 4-year PhD research project whilst enhancing professional development and research skills through a comprehensive training programme.
- This project has been shortlisted for funding by the NRPDTP.
- Please note that all international awards have been made for our programme for 2023 so we will not be accepting applications from international candidates, as defined by UKRI’s guidance on International Eligibility criteria for UKRI funded studentships.
- Visit the DTP website for further information on eligibility and how to apply.
- Our partners value diverse and inclusive work environments that are positive and supportive. Students are selected for admission without regard to gender, marital or civil partnership status, disability, race, nationality, ethnic origin, religion or belief, sexual orientation, age or social background.
References
- Combined single-cell gene and isoform expression analysis in haematopoietic stem and progenitor cells, Mincarelli L, Uzun V, Rushworth SA, Haerty W, Macaulay IC
- Defining Cell Identity with Single-Cell Omics, Mincarelli L, Lister A, Lipscombe J, Macaulay IC.

Macaulay Group
Developing new technologies and multi-omics approaches for single cell analysis.
Working at Earlham Institute.

Life at Earlham Institute
We believe that our people are our greatest asset, and we want you to have the freedom to achieve your very best work here.

Living in Norfolk
Norwich is a city of culture, with its rich history of art and writing, as well as a city of science - hosting some of the leading centres for life science research in the world.

Competency Framework
The behaviours and communication skills we expect from candidates.